skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ringstaff, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the intent to advance engineering education with NGSS, teachers across all grades lack self-efficacy in engineering pedagogy. Instructional shifts envisioned by NGSS, especially with inclusion of engineering, require substantial learning by teachers. For rural schools, due to geographic location and smaller collegial networks, there are challenges in providing content-specific professional learning. This project gathered researchers from four states to provide PL aligned to NGSS and delivered remotely to 150 rural teachers. In summer 2023, experts led a five-day workshop which modeled shifts called for by NGSS (e.g., equitable, discourse-rich, phenomena-based) and provided opportunities to experience next-generation teaching and learning. Likert scale surveys were collected before and after the workshop to gauge self-efficacy regarding teaching science and engineering. We found that science-focused PL, with engineering embedded rather than as stand-alone component, afforded growth in self-efficacy for teaching engineering. Pre-workshop surveys showed that teachers had higher self-efficacy towards teaching science than teaching engineering (Wilcoxon signed-rank; p<.001). Positive attitudes toward teaching science were leveraged to provide PL and pre-workshop to post-workshop analysis showed growth in self-efficacy towards teaching engineering (p<.001). Results are important for professional learning around teaching engineering, for professional learning with rural teachers, and for remote access to professional learning. 
    more » « less
  2. Our work in progress draws from an ongoing investigation of the needs of elementary teachers in small, rural school districts. Due to geographic location, rural schools often struggle to provide content-specific professional learning (PL). Smaller networks of science in these settings may also be barriers. We are exploring how targeted instructional supports that take rural teachers’ contexts into consideration can be sustained through the implementation of cost-effective modest supports. Our research examines the immediate impacts of PL, sustainability of PL outcomes when coupled with modest supports, specific impacts on engineering instruction, and student learning impacts. The intervention started with an online PL to introduce teachers to the NGSS and provide them with a foothold for three-dimensional teaching. This PL was designed for rural teachers using online platforms and resources. The program’s conceptual framework leverages a suite of modest supports previously identified to sustain PL outcomes. These supports are designed to scaffold teachers’ professional growth, provide steady encouragement, and foster community. Approximately 160 teachers across four states were recruited to participate in a 1-year online program, which started with a 5-day PL focused on NGSS-aligned science and engineering instruction. Some modest supports that have since followed, such as professional learning community (PLC) sessions and dedicated electronic supports (e.g., Google Site, shared resources, etc.). These sessions have been tailored to support teachers in these rural settings. Since the project began, we have collected responses from participating teachers about supports they believe would aid their understanding of science and engineering instructional strategies. We are continuing to collect data as teachers are planning science and engineering learning experiences for their classrooms. Our presentation will share details about teachers’ needs and rural contexts, and findings about the immediate impacts of the intervention. 
    more » « less
  3. Recent years have seen growing interest in utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities in K-12 education. At the same time, there is increasing awareness of the need to engage students as young as elementary school in complex topics such as physical science and computational thinking. Building on previous research investigating block-based programming activities for storytelling, we present an approach to block-based programming for interactive digital storytelling to engage upper elementary students (ages 9 to 10) in computational thinking and narrative skill development. We describe both the learning environment that combines block-based narrative programming with a rich, interactive visualization engine designed to produce animations of student generated stories, as well as an analysis of students using the system to create narratives. Student generated stories are evaluated from both a story quality perspective as well as from their ability to communicate and demonstrate computational thinking and physical science concepts and practices. We also explore student behaviors during the story creation process and discuss potential improvements for future interventions. 
    more » « less
  4. Integration of computational thinking (CT) within STEM subjects is common, although not often at the elementary school level where teachers have minimal experience with CT. We have designed and are refining INFUSECS, a narrative-centered digital learning environment to support upper elementary students’ CT and science knowledge construction as they create digital stories. We used orchestration as our theoretical framework, to examine how elementary teachers planned to approach this multidisciplinary implementation. Through a series of three focus groups, we learned that teachers planned for their students to take notes or utilize other graphic organizers to align the science content with the narrative planning, to engage in collaborative sense-making, and to observe the teacher modeling use of the INFUSECS system. Ultimately, the results have informed the next phase of our research design as we collect teacher and student level data as INFUSECS is utilized in authentic classroom settings. 
    more » « less
  5. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  6. null (Ed.)
    In an effort to infuse computational thinking practices in upper elementary science, and to promote positive student dispositions toward STEM, this project investigates a new narrative-centered maker environment involving: 1) problem-based learning research and modeling of physical science concepts, 2) application of learned concepts to original digital stories created using block-based programming, and 3) further communication of science understanding through play with fabricated story sets and characters reflective of narratives. 
    more » « less
  7. null (Ed.)
    In an effort to infuse computational thinking practices in upper elementary science, and to promote positive student dispositions toward STEM, this project investigates a new narrative-centered maker environment involving: 1) problem-based learning research and modeling of physical science concepts, 2) application of learned concepts to original digital stories created using block-based programming, and 3) further communication of science understanding through play with fabricated story sets and characters reflective of narratives. 
    more » « less